Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 94
Filter
1.
Sci Total Environ ; 929: 172414, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38631624

ABSTRACT

The integration of recombinase polymerase amplification (RPA) with CRISPR/Cas technology has revolutionized molecular diagnostics and pathogen detection due to its unparalleled sensitivity and trans-cleavage ability. However, its potential in the ecological and environmental monitoring scenarios for aquatic ecosystems remains largely unexplored, particularly in accurate qualitative/quantitative detection, and its actual performance in handling complex real environmental samples. Using zooplankton as a model, we have successfully optimized the RPA-CRISPR/Cas12a fluorescence detection platform (RPA-Cas-FQ), providing several crucial "technical tips". Our findings indicate the sensitivity of CRISPR/Cas12a alone is 5 × 109 copies/reaction, which can be dramatically increased to 5 copies/reaction when combined with RPA. The optimized RPA-Cas-FQ enables reliable qualitative and semi-quantitative detection within 50 min, and exhibits a good linear relationship between fluorescence intensity and DNA concentration (R2 = 0.956-0.974***). Additionally, we developed a rapid and straightforward identification procedure for single zooplankton by incorporating heat-lysis and DNA-barcode techniques. We evaluated the platform's effectiveness using real environmental DNA (eDNA) samples from the Three Gorges Reservoir, confirming its practicality. The eDNA-RPA-Cas-FQ demonstrated strong consistency (Kappa = 0.43***) with eDNA-Metabarcoding in detecting species presence/absence in the reservoir. Furthermore, the two semi-quantitative eDNA technologies showed a strong positive correlation (R2 = 0.58-0.87***). This platform also has the potential to monitor environmental pollutants by selecting appropriate indicator species. The novel insights and methodologies presented in this study represent a significant advancement in meeting the complex needs of aquatic ecosystem protection and monitoring.


Subject(s)
Environmental Monitoring , Zooplankton , Environmental Monitoring/methods , Animals , CRISPR-Cas Systems , DNA, Environmental/analysis , Nucleic Acid Amplification Techniques/methods , Recombinases/metabolism
2.
J Vis Exp ; (206)2024 Apr 12.
Article in English | MEDLINE | ID: mdl-38682933

ABSTRACT

Zebrafish serve as valuable models for research on growth, immunity, and gut microbiota due to their genomic similarities with mammals, transparent embryos developed in a relatively clean chorion environment, and extremely rapid development of larvae compared to rodent models. Germ-free (GF) zebrafish (Danio rerio) are crucial for evaluating pollutant toxicity and establishing human-like disease models related to microbial functions. In comparison to conventionally raised (CR) models (fish in common husbandry), GF zebrafish allow for more accurate manipulation of the host microbiota, aiding in determining the causal relationship between microorganisms and hosts. Consequently, they play a critical role in advancing our understanding of these relationships. However, GF zebrafish models are typically generated and researched during the early life stages (from embryos to larvae) due to limitations in immune function and nutrient absorption. This study optimizes the generation, maintenance, and identification of early GF zebrafish models without feeding and with long-term feeding using GF food (such as Artemia sp., brine shrimp). Throughout the process, daily sampling and culture were performed and identified through multiple detections, including plates and 16S rRNA sequencing. The aseptic rate, survival, and developmental indexes of GF zebrafish were recorded to ensure the quality and quantity of the generated models. Importantly, this study provides details on bacterial isolation and infection techniques for GF fish, enabling the efficient creation of GF fish models from larvae to juvenile stages with GF food support. By applying these procedures in biomedical research, scientists can better understand the relationships between intestinal bacterial functions and host health.


Subject(s)
Germ-Free Life , Larva , Models, Animal , Zebrafish , Animals , Zebrafish/microbiology , Larva/microbiology , Larva/growth & development , Female , Male
3.
Chemosphere ; 357: 142061, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38642775

ABSTRACT

Increasing amounts of amino-functionalized polystyrene nanoplastics (PS-NH2) are entering aquatic ecosystems, raising concerns. Hence, this study investigated 96-h acute toxicity of PS-NH2 and its combination with the pesticide atrazine (ATZ) in the absence/presence of humic acid (HA) on the microalgae Chlorella vulgaris (C. vulgaris). Results showed that both PS-NH2 and PS-NH2+ATZ reduced algal growth, photosynthetic pigments, protein content, and antioxidant capacity, while increasing enzymatic activities. Gene expression related to oxidative stress was altered in C. vulgaris exposed to these treatments. Morphological and intracellular changes were also observed. The combined toxicity of PS-NH2+ATZ demonstrated a synergistic effect, but the addition of environmentally relevant concentration of HA significantly alleviated its toxicity to C. vulgaris, indicating an antagonistic effect due to the emergence of an eco-corona, and entrapment and sedimentation of PS-NH2+ATZ particles by HA. This study firstly highlights the role of HA in mitigating the toxicity of PS-NH2 when combined with other harmful compounds, enhancing our understanding of HA's presence in the environment.


Subject(s)
Atrazine , Chlorella vulgaris , Herbicides , Humic Substances , Microplastics , Polystyrenes , Water Pollutants, Chemical , Chlorella vulgaris/drug effects , Atrazine/toxicity , Herbicides/toxicity , Polystyrenes/toxicity , Polystyrenes/chemistry , Water Pollutants, Chemical/toxicity , Microplastics/toxicity , Oxidative Stress/drug effects , Microalgae/drug effects , Antioxidants/metabolism , Toxicity Tests, Acute , Photosynthesis/drug effects
4.
Chemosphere ; 358: 142111, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38663677

ABSTRACT

In this study, microalgae Chlorella vulgaris (C. vulgaris) were simultaneously exposed to environmental concentrations of amino-functionalized polystyrene nanoplastics (PS-NH2; 0.05, 0.1, 0.2, 0.3 and 0.4 mg/L) and the world's second most used pesticide, the herbicide atrazine (ATZ; 10 µg/L), in the absence and presence of humic acid (HA; 1 mg/L) for 21 days. Due to the low concentrations of PS-NH2, the majority of them could not cause a significant difference in the end-points of biomass, chlorophylls a and b, total antioxidant, total protein, and superoxide dismutase and malondialdehyde compared to the control group (p > 0.05). On the other hand, by adding ATZ to the PS-NH2, all the mentioned end-point values showed a considerable difference from the control (p < 0.05). The exposure of PS-NH2+ATZ treatments to the HA could remarkably reduce their toxicity, additionally, HA was able to decrease the changes in the expression of genes related to oxidative stress (e.g., superoxide dismutase, glutathione reductase, and catalase) in the C. vulgaris in the most toxic treatment group (e.g., PS-NH2+ATZ). The synergistic toxicity of the PS-NH2+ATZ group could be due to their enhanced bioavailability for algal cells. Nevertheless, the toxicity alleviation in the PS-NH2+ATZ treatment group after the addition of HA could be due to the eco-corona formation, and changes in their zeta potential from positive to negative value, which would increase their electrostatic repulsion with the C. vulgaris cells, in such a way that HA also caused a decrease in the formation of C. vulgaris-NPs hetero-aggregates. This research underscores the complex interplay between PS-NH2, ATZ, and HA in aquatic environments and their collective impact on microalgal communities.

5.
Environ Sci Pollut Res Int ; 31(19): 28620-28631, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38561535

ABSTRACT

In recent years, there has been a significant rise in the utilization of amino-functionalized polystyrene nanoplastics (PS-NH2). This surge in usage can be attributed to their exceptional characteristics, including a substantial specific surface area, high energy, and strong reactivity. These properties make them highly suitable for a wide range of industrial and medical applications. Nevertheless, there is a growing apprehension regarding their potential toxicity to aquatic organisms, particularly when considering the potential impact of heavy metals like lead (Pb) on the toxicity of PS-NH2. Herein, we examined the toxic effects of sole PS-NH2 (90 nm) at five concentrations (e.g., 0, 0.125, 0.25, 0.5, and 1 mg/L), as well as the simultaneous exposure of PS-NH2 and Pb2+ (using two environmental concentrations, e.g., 20 µg/L for Pb low (PbL) and 80 µg/L for Pb higher (PbH)) to the microalga Chlorella vulgaris. After a 96-h exposure, significant differences in chlorophyll a content and algal growth (biomass) were observed between the control group and other treatments (ANOVA, p < 0.05). The algae exposed to PS-NH2, PS-NH2 + PbL, and PS-NH2 + PbH treatment groups exhibited dose-dependent toxicity responses to chlorophyll a content and biomass. According to the Abbott toxicity model, the combined toxicity of treatment groups of PS-NH2 and PbL,H showed synergistic effects. The largest morphological changes such as C. vulgaris' size reduction and cellular aggregation were evident in the medium treated with elevated concentrations of both PS-NH2 and Pb2+. The toxicity of the treatment groups followed the sequence PS-NH2 < PS-NH2 + PbL < PS-NH2 + PbH. These results contribute novel insights into co-exposure toxicity to PS-NH2 and Pb2+ in algae communities.


Subject(s)
Antioxidants , Chlorella vulgaris , Lead , Lipid Peroxidation , Polystyrenes , Chlorella vulgaris/drug effects , Lead/toxicity , Polystyrenes/toxicity , Lipid Peroxidation/drug effects , Water Pollutants, Chemical/toxicity
6.
Aquat Toxicol ; 270: 106894, 2024 May.
Article in English | MEDLINE | ID: mdl-38492287

ABSTRACT

This review explains the sources of nanoplastics (NPs) and microplastics (MPs), their release, fate, and associated health risks in the aquatic environment. In the 21st century, scientists are grappling with a major challenge posed by MPs and NPs. The global production of plastic has skyrocketed from 1.5 million tons in the 1950s to an astonishing 390.7 million tons in 2021. This pervasive presence of these materials in our environment has spurred scientific inquiry into their potentially harmful effects on living organisms. Studies have revealed that while MPs, with their larger surface area, are capable of absorbing contaminants and pathogens from the surroundings, NPs can easily be transferred through the food chain. As a result, living organisms may ingest them and accumulate them within their bodies. Due to their minuscule size, NPs are particularly difficult to isolate and quantify. Furthermore, exposure to both NPs and MPs has been linked to various adverse health effects in aquatic species, including neurological impairments, disruption of lipid and energy metabolism, and increased susceptibility to cytotoxicity, oxidative stress, inflammation, and reactive oxygen species (ROS) production. It is alarming to note that MPs have even been detected in commercial fish, highlighting the severity of this issue. There are also challenges associated with elucidating the toxicological effects of NPs and MPs, which are discussed in detail in this review. In conclusion, plastic pollution is a pressing issue that governments should tackle by ensuring proper implementation of rules and regulations at national and provincial levels to reduce its health risks.


Subject(s)
Microplastics , Water Pollutants, Chemical , Animals , Microplastics/toxicity , Plastics/toxicity , Water Pollutants, Chemical/toxicity , Environmental Pollution , Energy Metabolism
7.
Ecotoxicol Environ Saf ; 273: 116149, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38412632

ABSTRACT

It is still a serious public health issue that chronic kidney disease of uncertain etiology (CKDu) in Sri Lanka poses challenges in identification, prevention, and treatment. What environmental factors in drinking water cause kidney damage remains unclear. This study aimed to investigate the risks of various environmental factors that may induce CKDu, including water hardness, fluoride (HF), heavy metals (HM), microcystin-LR (MC-LR), and their combined exposure (HFMM). The research focused on comprehensive metabolome analysis, and correlation with transcriptomic and gut microbiota changes. Results revealed that chronic exposure led to kidney damage and pancreatic toxicity in adult zebrafish. Metabolomics profiling showed significant alterations in biochemical processes, with enriched metabolic pathways of oxidative phosphorylation, folate biosynthesis, arachidonic acid metabolism, FoxO signaling pathway, lysosome, pyruvate metabolism, and purine metabolism. The network analysis revealed significant changes in metabolites associated with renal function and diseases, including 20-Hydroxy-LTE4, PS(18:0/22:2(13Z,16Z)), Neuromedin N, 20-Oxo-Leukotriene E4, and phenol sulfate, which are involved in the fatty acyls and glycerophospholipids class. These metabolites were closely associated with the disrupted gut bacteria of g_ZOR0006, g_Pseudomonas, g_Tsukamurella, g_Cetobacterium, g_Flavobacterium, which belonged to dominant phyla of Firmicutes and Proteobacteria, etc., and differentially expressed genes (DEGs) such as egln3, ca2, jun, slc2a1b, and gls2b in zebrafish. Exploratory omics analyses revealed the shared significantly changed pathways in transcriptome and metabolome like calcium signaling and necroptosis, suggesting potential biomarkers for assessing kidney disease.


Subject(s)
Drinking Water , Renal Insufficiency, Chronic , Animals , Drinking Water/analysis , Zebrafish , Sri Lanka , Renal Insufficiency, Chronic/etiology , Metabolome
8.
Toxics ; 12(2)2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38393245

ABSTRACT

Poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) is a conductive polymer commonly used in various technological applications. However, its impact on aquatic ecosystems remains largely unexplored. In this study, we investigated the toxicity effects of PEDOT:PSS on zebrafish. We first determined the lethal concentration (LC50) of PEDOT:PSS in zebrafish and then exposed AB-type zebrafish embryos to different concentrations of PEDOT:PSS for 120 h. Our investigation elucidated the toxicity effects of zebrafish development, including morphological assessments, heart rate measurements, behavioral analysis, transcriptome profiling, and histopathological analysis. We discovered that PEDOT:PSS exhibited detrimental effects on the early developmental stages of zebrafish, exacerbating the oxidative stress level, suppressing zebrafish activity, impairing cardiac development, and causing intestinal cell damage. This study adds a new dimension to the developmental toxicity of PEDOT:PSS in zebrafish. Our findings contribute to our understanding of the ecological repercussions of PEDOT:PSS and highlight the importance of responsible development and application of novel materials in our rapidly evolving technological landscape.

9.
Sci Total Environ ; 917: 170535, 2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38307287

ABSTRACT

Owing to a wide range of advantages, such as stability, non-invasiveness, and ease of sampling, hair has been used progressively for comprehensive biomonitoring of organic pollutants for the last three decades. This has led to the development of new analytical and multi-class analysis methods for the assessment of a broad range of organic pollutants in various population groups, ranging from small-scale studies to advanced studies with a large number of participants based on different exposure settings. This meta-analysis summarizes the existing literature on the assessment of organic pollutants in hair in terms of residue levels, the correlation of hair residue levels with those of other biological matrices and socio-demographic factors, the reliability of hair versus other biomatrices for exposure assessment, the use of segmental hair analysis for chronic exposure evaluation and the effect of external contamination on hair residue levels. Significantly high concentrations of organic pollutants such as pesticides, flame retardants, polychlorinated biphenyls and polycyclic aromatic hydrocarbon were reported in human hair samples from different regions and under different exposure settings. Similarly, high concentrations of pesticides (from agricultural activities), flame retardants (E-waste dismantling activities), dioxins and furans were observed in various occupational settings. Moreover, significant correlations (p < 0.05) for hair and blood concentrations were observed in majority of studies featuring pesticides and flame retardants. While among sociodemographic factors, gender and age significantly affected the hair concentrations in females and children in general exposure settings, whereas adult workers in occupational settings. Furthermore, the assessment of the hair burden of persistent organic pollutants in domestic and wild animals showed high concentrations for pesticides such as HCHs and DDTs whereas the laboratory-based studies using animals demonstrated strong correlations between exposure dose, exposure duration, and measured organic pollutant levels, mainly for chlorpyrifos, diazinon, terbuthylazine, aldrin, dieldrin and pyrethroid metabolites. Considering the critical analysis of the results obtained from literature review, hair is regarded as a reliable matrix for organic pollutant assessment; however, some limitations, as discussed in this review, need to be overcome to reinforce the status of hair as a suitable matrix for exposure assessment.


Subject(s)
Environmental Pollutants , Flame Retardants , Pesticides , Polychlorinated Biphenyls , Adult , Animals , Child , Female , Humans , Environmental Monitoring/methods , Environmental Pollutants/analysis , Flame Retardants/analysis , Hair/chemistry , Pesticides/analysis , Polychlorinated Biphenyls/analysis , Reproducibility of Results
10.
Appl Microbiol Biotechnol ; 108(1): 130, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38229334

ABSTRACT

Although the Three Gorges Dam (TGD) is the world's largest hydroelectric dam, little is known about the spatial-temporal patterns and community assembly mechanisms of meio- and micro-eukaryotes and its two subtaxa (zooplankton and zoobenthos). This knowledge gap is particularly evident across various habitats and during different water-level periods, primarily arising from the annual regular dam regulation. To address this inquiry, we employed mitochondrial cytochrome c oxidase I (COI) gene-based environmental DNA (eDNA) metabarcoding technology to systematically analyze the biogeographic pattern of the three communities within the Three Gorges Reservoir (TGR). Our findings reveal distinct spatiotemporal characteristics and complementary patterns in the distribution of meio- and micro-eukaryotes. The three communities showed similar biogeographic patterns and assembly processes. Notably, the diversity of these three taxa gradually decreased along the river. Their communities were less shaped by stochastic processes, which gradually decreased along the longitudinal riverine-transition-lacustrine gradient. Hence, deterministic factors, such as seasonality, environmental, and spatial variables, along with species interactions, likely play a pivotal role in shaping these communities. Environmental factors primarily drive seasonal variations in these communities, while hydrological conditions, represented as spatial distance, predominantly influence spatial variations. These three communities followed the distance-decay pattern. In winter, compared to summer, both the decay and species interrelationships are more pronounced. Taken together, this study offers fresh insights into the composition and diversity patterns of meio- and micro-eukaryotes at the spatial-temporal level. It also uncovers the mechanisms behind community assembly in various environmental niches within the dam-induced river-reservoir systems. KEY POINTS: • Distribution and diversity of meio- and micro-eukaryotes exhibit distinct spatiotemporal patterns in the TGR. • Contribution of stochastic processes in community assembly gradually decreases along the river. • Deterministic factors and species interactions shape meio- and micro-eukaryotic community.


Subject(s)
Environmental Monitoring , Rivers , Animals , Ecosystem , Zooplankton , Seasons , China
11.
Sci Total Environ ; 912: 168949, 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38042186

ABSTRACT

Di-2-ethylhexyl phthalic acid (DEHP) is one of the most widely used plasticizers in the industry, which can improve the flexibility and durability of plastics. It is prone to migrate from various daily plastic products through wear and leaching into the surrounding environment and decompose into the more toxic metabolite mono-2-ethylhexyl phthalic acid (MEHP) after entering the human body. However, the impacts and mechanisms of MEHP on neuroblastoma are unclear. We exposed MYCN-amplified neuroblastoma SK-N-BE(2)C cells to an environmentally related concentration of MEHP and found that MEHP increased the proliferation and migration ability of tumor cells. The peroxisome proliferator-activated receptor (PPAR) ß/δ pathway was identified as a pivotal signaling pathway in neuroblastoma, mediating the effects of MEHP through transcriptional sequencing analysis. Because MEHP can bind to the PPARß/δ protein and initiate the expression of the downstream gene angiopoietin-like 4 (ANGPTL4), the PPARß/δ-specific agonist GW501516 and antagonist GSK3787, the recombinant human ANGPTL4 protein, and the knockdown of gene expression confirmed the regulation of the PPARß/δ-ANGPTL4 axis on the malignant phenotype of neuroblastoma. Based on the critical role of PPARß/δ and ANGPTL4 in the metabolic process, a non-targeted metabolomics analysis revealed that MEHP altered multiple metabolic pathways, particularly lipid metabolites involving fatty acyls, glycerophospholipids, and sterol lipids, which may also be potential factors promoting tumor progression. We have demonstrated for the first time that MEHP can target binding to PPARß/δ and affect the progression of neuroblastoma by activating the PPARß/δ-ANGPTL4 axis. This mechanism confirms the health risks of plasticizers as tumor promoters and provides new data support for targeted prevention and treatment of neuroblastoma.


Subject(s)
Diethylhexyl Phthalate/analogs & derivatives , Neuroblastoma , PPAR delta , PPAR-beta , Phthalic Acids , Humans , PPAR-beta/agonists , PPAR-beta/genetics , PPAR-beta/metabolism , N-Myc Proto-Oncogene Protein , Plasticizers/toxicity , Angiopoietins/genetics , Angiopoietins/metabolism , Phthalic Acids/toxicity , Phthalic Acids/metabolism , PPAR delta/agonists , PPAR delta/genetics , PPAR delta/metabolism , Angiopoietin-Like Protein 4
12.
Water Res ; 246: 120686, 2023 Nov 01.
Article in English | MEDLINE | ID: mdl-37812979

ABSTRACT

Effective and standardized monitoring methodologies are vital for successful reservoir restoration and management. Environmental DNA (eDNA) metabarcoding sequencing offers a promising alternative for biomonitoring and can overcome many limitations of traditional morphological bioassessment. Recent attempts have even shown that supervised machine learning (SML) can directly infer biotic indices (BI) from eDNA metabarcoding data, bypassing the cumbersome calculation process of BI regardless of the taxonomic assignment of eDNA sequences. However, questions surrounding the general applicability of this taxonomy-free approach to monitoring reservoir health remain unclear, including model stability, feature selection, algorithm choice, and multi-season biomonitoring. Here, we firstly developed a novel biological integrity index (Me-IBI) that integrates multitrophic interactions and environmental information, based on taxonomy-assigned eDNA metabarcoding data. The Me-IBI can better distinguish the actual health status of the Three Gorges Reservoir (TGR) than physicochemical assessments and have a clear response to human activity. Then, taking this reliable Me-IBI as a supervised label, we compared the impact of selecting different numbers of features and SML algorithms on the stability and predictive performance of the model for predicting ecological conditions in multiple seasons using taxonomy-free eDNA metabarcoding data. We discovered that even with a small number of features, different SML algorithms can establish a stable model and obtain excellent predictive performance. Finally, we proposed a four-step strategy for standardized routine biomonitoring using SML tools. Our study firstly explores the general applicability problem of the taxonomy-free eDNA-SML approach and establishes a solid foundation for the large-scale and standardized biomonitoring application.


Subject(s)
DNA, Environmental , Humans , Biodiversity , Environmental Monitoring/methods , DNA Barcoding, Taxonomic/methods , Supervised Machine Learning , Ecosystem
13.
Ecotoxicol Environ Saf ; 265: 115516, 2023 Oct 15.
Article in English | MEDLINE | ID: mdl-37757626

ABSTRACT

Mono-2-ethylhexyl phthalic acid (MEHP) is the most toxic metabolite of plasticizer di-2-ethylhexyl phthalic acid (DEHP), and there is limited information available on the effects of MEHP on neurotoxicity. This study aims to examine the neurotoxicity of MEHP and preliminarily explore its potential molecular mechanisms. We found that MEHP impeded the growth of zebrafish embryos and the neurodevelopmental-related gene expression at environmentally relevant concentrations. MEHP exposure also induces oxidative stress response and brain cell apoptosis accompanied by a decrease in acetylcholinesterase (AChE) activity in zebrafish larvae. RNA-Seq and bioinformatics analysis showed that MEHP treatment altered the nervous system, neurogenic diseases, and visual perception pathways. The locomotor activity in dark-to-light cycles and phototaxis test confirmed the abnormal neural behavior of zebrafish larvae. Besides, the immune system has produced a large number of differentially expressed genes related to neural regulation. Inflammatory factor IL1ß and IL-17 signaling pathways highly respond to MEHP, indicating that inflammation caused by immune system imbalance is a potential mechanism of MEHP-induced neurotoxicity. This study expands the understanding of the toxicity and molecular mechanisms of MEHP, providing a new perspective for in-depth neurotoxicity exploration of similar compounds.

14.
Fish Shellfish Immunol ; 142: 109130, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37777099

ABSTRACT

The mitfa gene is a well-known transcription factor associated with microphthalmia and is essential for early melanophore development. However, little is known about how mitfa affects the immune system. Here, we generated a novel mitfa knock-out zebrafish line using the CRISPR/Cas9 system. The mitfa-/- zebrafish exhibited reduced melanin levels compared to the nacre mutant. We investigated the impact on the immune system after exposure to Edwardsiella tarda and bifenazate in zebrafish larvae, and observed that the macrophage numbers were reduced in both treated groups. Remarkably, the expression levels of immune-related genes exhibited significant increases after bacterial challenge or bifenazate exposure in the mitfa-/- zebrafish, except for tlr4 and rela. Furthermore, we conducted xenograft experiments using mouse B16 melanoma cells. Notably, the cancer cells didn't show a high cell migration ratio, implying that the immune system was highly activated after the loss of mifta. Taken together, our findings suggest that mitfa-/- zebrafish serve as a valuable model for investigating the relationship between the immune system and melanocytes, providing new insights into the role of mitfa in immune responses.


Subject(s)
Zebrafish Proteins , Zebrafish , Animals , Mice , Zebrafish/genetics , Zebrafish/metabolism , Zebrafish Proteins/metabolism , Microphthalmia-Associated Transcription Factor/genetics , Carbamates/metabolism
15.
Environ Pollut ; 337: 122524, 2023 Nov 15.
Article in English | MEDLINE | ID: mdl-37683759

ABSTRACT

Chronic kidney disease of unknown etiology (CKDu) is an endemic disease in the dry zone of farming communities, Sri Lanka. The drinking water in a CKDu prevalent area contains a high concentration of F-, hardness and other environmental pollutants, including heavy metals and microcystin, which are considered possible etiology of CKDu in these areas. Here, multi-omics data with host transcriptome, metabolome and gut microbiomes were obtained using simulated local drinking water of Sri Lanka after their exposure to adult zebrafish. Based on an integrated multi-omics analysis in the context of host physiology in the kidney injury samples with different pathologic grades, two common pathways necroptosis and purine metabolism were identified as potentially important pathways that affect kidney injury. The key metabolite acetyl adenylate in the purine metabolism pathway was significantly positively correlated with Comamonas (rho = 0.72) and significantly negatively correlated with Plesiomonas (rho = -0.58). This crucial metabolite and two key gut bacteria genera may not only be potential markers but also potential therapeutic targets in the uric acid metabolic pathway, which is an important factor in the pathogenesis of acute kidney injury (AKI) in general, as well as of chronic kidney disease (CKD). Based on this, we revealed the urea metabolism pathway of kidney injury in zebrafish and provided a new avenue for the treatment of CKDu in Sri Lanka.


Subject(s)
Drinking Water , Renal Insufficiency, Chronic , Animals , Drinking Water/analysis , Zebrafish , Chronic Kidney Diseases of Uncertain Etiology , Multiomics , Renal Insufficiency, Chronic/epidemiology , Sri Lanka/epidemiology , Purines
16.
Aquat Toxicol ; 262: 106671, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37657145

ABSTRACT

Groundwater in Sri Lanka, contaminated with environmental toxins, is suspected to potentially induce chronic kidney disease of uncertain etiology (CKDu) in humans. This study aims to elucidate the potential mitigating effects of probiotics on kidney damage induced by exposure to this local groundwater (LW) in zebrafish. We used zebrafish as a model organism and exposed them to local groundwater to evaluate the risk of CKDu. Probiotics were then added at a concentration of 108 colony-forming units per milliliter (CFU/mL). Our findings revealed that exposure to local groundwater resulted in abnormalities, such as tail deletion and spinal curvature in zebrafish larvae. However, the addition of probiotics mitigated these effects, improving the hatching rate, heart rate, length, weight, deformity rate, survival rate, and abnormal behavior of zebrafish. It also positively influenced the differential expression levels of kidney development and immunity-related genes (dync2h1, foxj1, pkd2, gata3, slc20a1, il1ß, and lyso). Furthermore, exposure to LW decreased both the diversity and abundance of microbiota in zebrafish larvae. However, treatment with probiotics, such as L. plantarum and L. rhamnosus partially restored the disrupted gut microbiota and significantly impacted the cellular process pathways of the microbial community, as determined by KEGG (Kyoto Encyclopedia of Genes and Genomes) analysis. In conclusion, this study highlights the risks associated with Sri Lanka's local groundwater from a CKDu prevalent area and confirms the beneficial effects of different probiotics. These findings may provide new insights into bacterial function in host kidney health.


Subject(s)
Groundwater , Renal Insufficiency, Chronic , Water Pollutants, Chemical , Humans , Animals , Zebrafish , Sri Lanka , Water Pollutants, Chemical/toxicity , Kidney , Larva
17.
iScience ; 26(9): 107519, 2023 Sep 15.
Article in English | MEDLINE | ID: mdl-37636063

ABSTRACT

Environmental DNA (eDNA) research holds great promise for improving biodiversity science and conservation efforts by enabling worldwide species censuses in near real-time. Current eDNA methods face challenges in detecting low-abundance ecologically important species. In this study, we used isothermal recombinase polymerase amplification (RPA)-CRISPR/Cas detection to test Ctenopharyngodon idella. RPA-CRISPR-Cas12a detected 6.0 eDNA copies/µL within 35 min. Ecologically rare species were identified in the Three Gorges Reservoir Area (TGRA) using functional distinctiveness and geographical restrictiveness, with seven fish species (9%) classified as potentially ecologically rare including three species in this investigation. RPA-CRISPR/Cas12a-FQ outperformed high-throughput sequencing (HTS) and qPCR in detecting low-abundance eDNA (AUC = 0.883∗∗). A significant linear correlation (R2 = 0.682∗∗) between RPA-CRISPR/Cas12a-FQ and HTS quantification suggests its potential for predicting species abundance and enhancing eDNA-based fish biodiversity monitoring. This study highlights the value of RPA-CRISPR/Cas12a-FQ as a tool for advancing eDNA research and conservation efforts.

18.
Environ Res ; 236(Pt 2): 116858, 2023 Nov 01.
Article in English | MEDLINE | ID: mdl-37562740

ABSTRACT

Micro (nano)plastics (MNPs) are pollutants of worldwide concern for their ubiquitous environmental presence and associated impacts. The higher consumption of MNPs contaminated commercial food can cause potential adverse human health effects. This review highlights the evidence of MNPs in commercial food items and summarizes different sampling, extraction, and digestion techniques for the isolation of MNPs, such as oxidizing digestion, enzymatic digestion, alkaline digestion and acidic digestion. Various methods for the characterization and quantification of microplastics (MPs) are also compared, including µ-Raman spectroscopy, µ-Fourier transform infrared spectroscopy (FTIR), thermal analysis and Scanning electron microscopy with energy-dispersive X-ray spectroscopy (SEM-EDX). Finally, we share our concerns about the risks of MNPs to human health through the consumption of commercial seafood. The knowledge of the potential human health impacts at a subcellular or molecular level of consuming mariculture products contaminated with MNPs is still limited. Moreover, MNPs are somewhat limited, hard to measure, and still contentious. Due to the nutritional significance of fish consumption, the risk of exposure to MNPs and the associated health effects are of the utmost importance.

19.
Environ Pollut ; 332: 121967, 2023 Sep 01.
Article in English | MEDLINE | ID: mdl-37290634

ABSTRACT

Chronic kidney disease with uncertain etiology (CKDu) in Sri Lanka has attracted much attention as a global health issue. However, how environmental factors in local drinking water induce kidney damage in organisms is still elusive. We investigated multiple environmental factors including water hardness and fluoride (HF), heavy metals (HM), microcystin-LR (MC-LR), and their combined exposure (HFMM) to elucidate their toxic effects on CKDu risk in zebrafish. Acute exposure affected renal development and inhibited the fluorescence of Na, K-ATPase alpha1A4:GFP zebrafish kidney. Chronic exposure influenced the body weight of both genders of adult fish and induced kidney damage by histopathological analyses. Furthermore, the exposure significantly disturbed differential expression genes (DEGs), diversity and richness of gut microbiota, and critical metabolites related to renal functions. The transcriptomic analysis revealed that kidney-related DEGs were linked with renal cell carcinoma, proximal tubule bicarbonate reclamation, calcium signaling pathway, and HIF-1 signaling pathway. The significantly disrupted intestinal microbiota was closely related to the environmental factors and H&E score, which demonstrated the mechanisms of kidney risks. Notably, the Spearman correlation analysis indicated that the changed bacteria such as Pseudomonas, Paracoccus, and ZOR0006, etc were significantly connected to the DEGs and metabolites. Therefore, the assessment of multiple environmental factors provided new insights on "bio-markers" as potential therapies of the target signaling pathways, metabolites, and gut bacteria to monitor or protect residents from CKDu.


Subject(s)
Drinking Water , Renal Insufficiency, Chronic , Animals , Male , Female , Zebrafish , Sri Lanka , Drinking Water/analysis , Fluorides/analysis , Renal Insufficiency, Chronic/etiology
20.
Aquat Toxicol ; 261: 106614, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37390778

ABSTRACT

Antibiotics, due to their stability and persistence in the environment, can have chronic impacts on various ecosystems and organisms. However, the molecular mechanisms underlying antibiotic toxicity at environmental concentrations, particularly the neurotoxic effects of sulfonamides (SAs), remain poorly understood. In this study, we assessed the neurotoxicity of six SAs including the sulfadiazine (SD), sulfathiazole (ST), sulfamethoxazole (SMX), sulfisoxazole (SIZ), sulfapyridine (SPD), and sulfadimethoxine (SDM) by exposing zebrafish to environmentally relevant concentrations (ERCs). The SAs exhibited concentration-dependent effects on zebrafish behavior, including spontaneous movement, heartbeat, survival rate, and body metrics, ultimately leading to depressive-like symptoms and sublethal toxicity during early life stages. Notably, even the lowest SA concentration (0.05 µg/L) induced neurotoxicity and behavioral impairment in zebrafish. We observed a dose-dependent increase in melancholy behavior as indicated by increased resting time and decreased motor activity in zebrafish larvae. Following exposure to SAs from 4 to 120 h post-fertilization (hpf), key genes involved in folate synthesis [sepiapterin reductase a (spra), phenylalanine hydroxylase (pah), tyrosine hydroxylase (th), and tryptophan hydroxylase 1 (tryptophan 5-monooxygenase) a tryptophan hydroxylase (tph1a)] and carbonic anhydrase (CA) metabolism [carbonic anhydrase II (ca2), carbonic anhydrase IV a (ca4a), carbonic anhydrase VII (ca7), and carbonic anhydrase XIV (ca14)] were significantly downregulated or inhibited at different concentrations. Our findings demonstrate that acute exposure to six SAs at environmentally relevant concentrations induces developmental and neurotoxic effects in zebrafish, impacting folate synthesis pathways and CA metabolism. These results provide valuable insights into the potential role of antibiotics in depressive disorders and neuroregulatory pathways.


Subject(s)
Carbonic Anhydrases , Water Pollutants, Chemical , Animals , Sulfonamides/toxicity , Zebrafish , Tryptophan Hydroxylase/pharmacology , Ecosystem , Water Pollutants, Chemical/toxicity , Sulfanilamide/pharmacology , Anti-Bacterial Agents/pharmacology , Larva , Folic Acid/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...